Volumetric Properties of Binary Mixtures. 1. 2-Propanone + 2,2,4-Trimethylpentane and n-Heptane + Ethanol Mixtures

D. Papaloannou, D. Zlakas, and C. Panayiotou*
Department of Chemical Engineering and Chemical Process Engineering Research Institute, University of Thessalonlkl, 54006 Thessalonikl, Greece

Abstract

Experimental densities over extended ranges of external condifions for the systems 2-propanone + 2,2,4-trimethylpentane and n-heptane + ethanol are reported. The data have been used for calculating excess volumes, lsothermal compressibilities, and thermal expansion coefficients. In addition ultrasound velocity measurements are reported. These later measurements have been used for caiculating isentropic compressibilities. Measured or derived properties are compared whth avallable rellable literature data.

Introduction

Volumetric properties of fluids and their mixtures are important parameters in process design. In addition, they are needed in transforming raw data to useful thermophysical properties, such as dynamic viscosity and surface tension, and in transforming calorimetric measurements at constant pressure to data at constant volume. They are also needed in theoretical calculations, one typical example being the determination of the scaling and interaction parameters in equation-of-state theories (1-3).

In this series of papers we present consistent sets of experimental volumetric data for a number of representative systems. The first system studied is ethanol $+n$-heptane, whose volumetric properties at atmospheric pressure have been carefully studied besides others, by Benson and collaborators $(4,5)$. Their data are used for testing in part our experimental setup. The second system studied is acetone (2propanone) + isooctane ($2,2,4$-trimethylpentane), whose dynamic viscosity (6) and surface tension (7) have been measured previously.

Experimental Section

Materla/s. Pure liquids used in this work were pro analysi grades from Merck. Their purities were determined by gasliquid chromatography and were better than 99.5. The mixtures were prepared by weight with precision 0.0001 g .50 mL flasks with septum caps and magnetic stirring bars were used. The vapor space in the flask was initlally $2-3 \mathrm{~cm}^{3}$. Because of the small vapor space and the reproducibility of density measurements, no gas corrections were applied.

Density. The densities, ρ, at atmospheric pressure have been measured in a vibrating tube densitometer, Model DMA 60/602 of Anton Paar. Bidistilled water and air were used as calibrating substances. The densties of higher pressures were measured in equipment described earlier (8). It consisted of a high-pressure density cell, Model DMA 512 of Anton Paar, a homemade compression cell equipped with a pressure transducer, Model PDCR 610 of Druck, and a dead-weight tester, Model MTU600 of Metronex. The compression cell consisted of an outer stainless steel cylinder, along the axis of which was

[^0]located a thin-wall Teflon tube containing the sample. Outside the Teflon tube was the compression fluid-a commerclal hydraulic fluid. The equipment was calibrated with accurate experimental high-pressure densities of water (9) and methanol (10). No hysteresis was observed in the density measurements by increasing and then decreasing the external pressure. The temperature in the measuring cells was regulated through a Haake ultrathermostat and was kept constant to within 0.01 K . For the temperature measurements a precision digital thermometer, Model S 1220 of Systemteknik, with specially designed sensors was used. The estimated error in the density measurement at atmospheric pressure is $5 \times 10^{-6} \mathrm{~g} \mathrm{~cm}^{-3}$. The corresponding error with the high pressure cell is $1 \times 10^{-4} \mathrm{~g}$ cm^{-3}.
Uitrasonic Velocity. The ultrasound velocity was measured in a sing-around equipment, Model RN-1A of DHN. The singaround method belongs to the methods with a constant acoustic path. The equipment consisted of a stainless steel measuring vessel having the two transducers, type PXE 5 of Fhilips, the velocimeter RN-1A, and the frequency meter KZ 2026A for measuring the signal frequency f. The measuring vessel was immersed in a Haake thermostat with a temperature stability better than 0.01 K . The resonance frequency of the transducers was 4 MHz . The sound velocity, c, is related to f in the following way:
\[

$$
\begin{equation*}
\frac{1}{f}=\frac{L}{c}+\tau \tag{1}
\end{equation*}
$$

\]

where L is the distance between the transducers and τ is the delay time of the impulse in the circuit. L and τ are vessel constants and were obtained by calibration with 10 standard liquids of accurately known c.

Results and Discussion

The densities of the mixtures n-heptane + ethanol and acetone + isooctane have been measured at 30 pressures between 1 and 340 bar. Selected data for 10 pressures are reported in Tables I and II. The complete sets of data are available upon request. In Figure 1 are compared our experimental data for pure ethanol with literature data (11). As can be seen, our measurements are in good agreement with literature values. On the basis of the experimental densities, the molar volumes of mixing V^{E} at each pressure may be calculated from the equation

$$
\begin{equation*}
V^{\mathrm{E}}=x_{1} M_{1}\left(\frac{1}{\rho}-\frac{1}{\rho_{1}}\right)+x_{2} M_{2}\left(\frac{1}{\rho}-\frac{1}{\rho_{2}}\right) \tag{2}
\end{equation*}
$$

where M_{l} and x_{l} are the molar mass and the mole fraction, respectively, of component i.
In Figures 2 and 3 are shown the excess volumes (molar volumes of mixing) of the two systems at three representative pressures. Excess volume is diminished with pressure in a similar way for both systems. In the same figures are shown excess volumes at 1 atm measured with the low-pressure

Figure 1. Experimental density ρ of pure ethanol at 298.15 K as a function of pressure P: ■, Kubota et al. (11); Δ, this work.

Figure 2. Excess molar volume V^{E} for the system n-heptane (1) + ethanol (2) at 298.15 K at varlous pressures P as a function of the mole fraction x, of heptane: , atmosphertc pressure (4); $O, P=1.01$ bar with the DMA 602 cell; $\square, P=1.01$ bar with the DMA 512 cell; $\Delta, P=198.9$ bar; $0, P=338.1$ bar.

Figure 3. Excess molar volume V^{E} for the system acetone (1) + isooctane (2) at 298.15 K at various pressures as a function of the mole fraction x, of acetone: $O, P=1.01$ bar with bar with the DMA 602 cell; $\square, P=1.01$ bar with the DMA 512 cell; $\Delta, P=198.9$ bar; $\diamond, P=338.1$ bar.

Figure 4. Isothermal compresslbility β_{T} for the system n-heptane (1) + ethanol (2) at 298.15 K at various pressures P as a function of the mole traction x_{1} of heptane: $\square, P=1.01$ bar; $\Delta, P=198.9$ bar; 0 , $P=338.1 \mathrm{bar}$.

Figure 5. Isothermal compressibility β_{T} for the system acetone (1) + isooctane (2) at 298.15 K at various pressures P as a function of the mole fraction x_{1} of acetone. Symbols as in Figure 4.
density cell, type DMA 602 of Anton Paar. As observed, the two sets of data measured with the two cells are in good agreement. In Figure 2 are also shown excess volumes at atmospheric pressure measured by Benson et al. (5). Our measurements are also in good agreement with these latter data.
At each composition the complete set of experimental densities ($\mathbf{3 0}$ data points) has been used for the determination of the coefficients of the fourth-order polynomial

$$
\begin{equation*}
1 /\left(\rho /\left(\mathrm{g} \mathrm{~cm}^{-3}\right)\right)=\sum_{t=0}^{4} a_{l}(P / \text { bar })^{\prime} \tag{3}
\end{equation*}
$$

Coefficients a_{1} of eq 3 along with the standard deviation of fit are reported in Tables III and IV. Equation 3 has subsequently been used for the evaluation of the isothermal compressibilities, β_{T}, of the mixtures given by

$$
\begin{equation*}
\beta_{T}=\left(\frac{\partial \ln \rho}{\partial P}\right)_{T} \tag{4}
\end{equation*}
$$

In Figures 4 and 5 are shown isothermal compressibility data

Table I. Experimental Densities ρ for the System Heptane (1) + Ethanol (2) at 298.15 K as a Function of Pressure P and Mole Fraction x_{1} of Heptane

	ρ at various $P /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$									
x_{1}	$\begin{aligned} & 1.01 \\ & \text { bar } \end{aligned}$	$\begin{aligned} & 20.0 \\ & \text { bar } \end{aligned}$	$\begin{aligned} & 39.9 \\ & \text { bar } \end{aligned}$	$\begin{aligned} & 79.6 \\ & \text { bar } \end{aligned}$	$\begin{gathered} 119.4 \\ \text { bar } \end{gathered}$	$\begin{gathered} 159.1 \\ \text { bar } \end{gathered}$	$\begin{gathered} 198.9 \\ \text { bar } \end{gathered}$	$\begin{gathered} 258.6 \\ \text { bar } \end{gathered}$	$\begin{gathered} 298.3 \\ \text { bar } \end{gathered}$	$\begin{gathered} 338.1 \\ \text { bar } \end{gathered}$
0.0000	0.7852	0.7866	0.7884	0.7916	0.7948	0.7978	0.8008	0.8051	0.8079	0.8107
0.0251	0.7781	0.7797	0.7814	0.7846	0.7878	0.7909	0.7939	0.7983	0.8011	0.8039
0.0498	0.7716	0.7732	0.7749	0.7782	0.7814	0.7845	0.7876	0.7919	0.7948	0.7976
0.1002	0.7598	0.7615	0.7632	0.7665	0.7698	0.7729	0.7759	0.7803	0.7832	0.7860
0.1723	0.7458	0.7474	0.7492	0.7526	0.7558	0.7590	0.7620	0.7665	0.7694	0.7722
0.2004	0.7412	0.7429	0.7447	0.7481	0.7513	0.7544	0.7575	0.7620	0.7649	0.7677
0.3017	0.7269	0.7286	0.7303	0.7337	0.7370	0.7402	0.7433	0.7478	0.7507	0.7536
0.4025	0.7154	0.7171	0.7189	0.7224	0.7257	0.7289	0.7320	0.7365	0.7394	0.7423
0.4991	0.7065	0.7083	0.7101	0.7135	0.7169	0.7201	0.7232	0.7277	0.7306	0.7335
0.5551	0.7021	0.7039	0.7056	0.7091	0.7124	0.7156	0.7188	0.7233	0.7262	0.7291
0.6515	0.6955	0.6972	0.6990	0.7025	0.7058	0.7090	0.7121	0.7166	0.7196	0.7224
0.6991	0.6926	0.6944	0.6962	0.6996	0.7029	0.7061	0.7093	0.7138	0.7167	0.7195
0.7985	0.6873	0.6891	0.6909	0.6943	0.6976	0.7008	0.7039	0.7084	0.7113	0.7142
0.8839	0.6835	0.6852	0.6870	0.6905	0.6938	0.6969	0.7000	0.7045	0.7074	0.7102
0.9387	0.6814	0.6831	0.6849	0.6883	0.6916	0.6948	0.6978	0.7023	0.7052	0.7080
0.9464	0.6813	0.6830	0.6847	0.6881	0.6914	0.6945	0.6976	0.7020	0.7049	0.7077
0.9832	0.6801	0.6817	0.6835	0.6869	0.6901	0.6932	0.6963	0.7007	0.7036	0.7064
1.0000	0.6797	0.6814	0.6832	0.6866	0.6899	0.6930	0.6961	0.7005	0.7033	0.7061

Table II. Experimental Densities ρ for the System Acetone (1) + Isooctane (2) at 298.15 K as a Function of Pressure P and Mole Fraction x_{1} of Acetone

x_{1}	ρ at various $P /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$									
	$\begin{aligned} & 1.01 \\ & \text { bar } \end{aligned}$	$\begin{aligned} & 20.0 \\ & \text { bar } \end{aligned}$	$\begin{gathered} 39.9 \\ \text { bar } \end{gathered}$	$\begin{aligned} & 79.6 \\ & \text { bar } \end{aligned}$	$\begin{gathered} 119.4 \\ \text { bar } \end{gathered}$	$\begin{gathered} 159.1 \\ \text { bar } \end{gathered}$	$\begin{gathered} 198.9 \\ \text { bar } \end{gathered}$	258.6 bar	$\begin{gathered} 298.3 \\ \text { bar } \end{gathered}$	$\begin{gathered} 338.1 \\ \text { bar } \end{gathered}$
0.0000	0.6881	0.6899	0.6918	0.6955	0.6989	0.7023	0.7055	0.7101	0.7130	0.7160
0.1028	0.6908	0.6927	0.6946	0.6983	0.7018	0.7052	0.7085	0.7132	0.7162	0.7192
0.1921	0.6942	0.6961	0.6981	0.7019	0.7054	0.7088	0.7121	0.7169	0.7199	0.7229
0.3014	0.6990	0.7009	0.7029	0.7067	0.7103	0.7138	0.7171	0.7219	0.7250	0.7280
0.4012	0.7047	0.7067	0.7087	0.7125	0.7161	0.7197	0.7230	0.7279	0.7310	0.7340
0.5016	0.7117	0.7137	0.7157	0.7196	0.7232	0.7268	0.7302	0.7351	0.7382	0.7413
0.6000	0.7201	0.7221	0.7241	0.7280	0.7317	0.7353	0.7387	0.7436	0.7467	0.7499
0.7015	0.7311	0.7331	0.7351	0.7390	0.7427	0.7462	0.7496	0.7445	0.7576	0.7608
0.7990	0.7442	0.7462	0.7482	0.7521	0.7557	0.7593	0.7627	0.7676	0.7707	0.7739
0.9002	0.7616	0.7635	0.7655	0.7693	0.7729	0.7764	0.7798	0.7848	0.7879	0.7911
1.0000	0.7845	0.7863	0.7883	0.7920	0.7956	0.7990	0.8024	0.8072	0.8103	0.8135

Table III. Coefficients a_{i} in Equation 3 and Standard Deviation $\sigma(\rho)$ for the System Heptane (1) + Ethanol (2) at 298.15 K at Mole Fraction x_{1} of Heptane

x_{1}	a_{0}	$a_{1} / 10^{-3}$	$a_{2} / 10^{-7}$	$a_{3} / 10^{-10}$	$a_{4} / 10^{-13}$	$\sigma(\rho) /\left(10^{-5} \mathrm{~g} \mathrm{~cm}^{-3}\right)$
0.0000	1.273749	-0.13719	0.68993	-0.54642	0.59105	2
0.0251	1.285395	-0.14235	0.65274		-0.60770	3
0.0498	1.296200	-0.14700	0.79872	-0.47813		3
0.1002	1.316220	-0.15278	0.87081	-0.59594		3
0.1723	1.341082	-0.16210	1.08366	-1.27702	0.90611	3
0.2004	1.349301	-0.16637	1.34666	-2.28772	2.23437	3
0.3017	1.375939	-0.17227	1.11589	-1.09643	0.62003	3
0.4025	1.397951	-0.17959	1.14665	-0.80950		3
0.4991	1.499070	-0.18551	1.20999	-0.85730		3
0.5551	1.424426	-0.18718	1.19219	-0.84113		3
0.6515	1.438085	-0.19217	1.37184	-1.494 42	0.8844	3
0.6991	1.443940	-0.19343	1.40323	-1.58794	1.00487	3
0.7985	1.455118	-0.19709	1.46135	-1.50994	0.66343	3
0.8839	1.463228	-0.19816	1.51788	-1.86330	1.19105	3
0.9387	1.467786	-0.19757	1.34098	-1.02337		3
0.9464	1.468060	-0.19564	1.34147	-1.33009	0.64266	3
0.9832	1.470644	-0.194 49	1.29307	-1.355 86	0.93293	3
1.0000	1.471458	-0.19847	1.36297	-0.97159		2

for the two systems at three representative pressures. As can be seen in both systems, the isothermal compressibility is larger than the additively calculated value, the difference decreasing with increasing pressure.

Primary ultrasound velocity measurements are reported in Tables V and VI, along with the isentropic compressibillies calculated by

$$
\begin{equation*}
\beta_{s}=\left(\rho c^{2}\right)^{-1} \tag{5}
\end{equation*}
$$

In Figure 6, our isentropic compressibility data for the system ethanol $+n$-heptane are compared with literature data (4). As
can be seen, the two sets of data are in good agreement. Consistent sets of isothermal and isentropic compressibility data are useful quantities for the estimation of the ratio of heat capacities at constant pressure and volume by the equation

$$
\begin{equation*}
C_{P} / C_{V}=\beta_{T} / \beta_{S} \tag{6}
\end{equation*}
$$

In Tables VII and VIII are reported experimental densities at atmospheric pressures and for temperatures different from 298.15 K. These data (at three temperatures) are not sufficient for an accurate estimation of the thermal (cubic) expansion

Table IV. Coefficients a_{i} in Equation 3 and Standard Deviation $\sigma(\rho)$ for the System Acetone (1) + Isooctane (2) at 298.15 K at Mole Fraction x_{1} of Acetone

x_{1}	a_{0}	$a_{1} / 10^{-3}$	$a_{2} / 10^{-7}$	$a_{3} / 10^{-10}$	$a_{4} / 10^{-13}$	$\sigma(\rho) /\left(10^{-5} \mathrm{~g} \mathrm{~cm}^{-3}\right)$
0.0000	1.453443	-0.20625	1.32304		-1.62091	2
0.1028	1.447722	-0.20807	1.35559		-1.73871	3
0.1921	1.440630	-0.21048	1.46305		-2.165 21	3
0.3014	1.430801	-0.20889	1.38973		-1.85888	3
0.4012	1.419153	-0.207 23	1.36186		-1.75540	3
0.5016	1.405295	-0.20607	1.38623		-1.81422	3
0.6001	1.388841	-0.20100	1.30337		-1.68969	3
0.7015	1.367911	-0.19626	1.58915	-1.35631		3
0.7990	1.343891	-0.19117	1.72853	-2.22285	1.35949	3
0.9002	1.313259	-0.17667	1.24325	-0.92898		3
1.0000	1.274904	-0.16103	0.91189		-1.190 19	2

Table V. Experimental Sound Velocities c and Calculated Isentropic Compressibilities β_{S}, Equation 5, for the System Heptane (1) + Ethanol (2) at 298.15 K and Atmospheric Pressure as a Function of the Mole Fraction x_{1} of Heptane

x_{1}	$c /\left(\mathrm{m} \mathrm{s}^{-1}\right)$	$\beta_{S} /\left(10^{-9}\right.$ $\left.\mathrm{Pa}^{-1}\right)$	x_{1}	$c /\left(\mathrm{m} \mathrm{s}^{-1}\right)$	$\beta_{S} /\left(10^{-9}\right.$ $\left.\mathrm{Pa}^{-1}\right)$
0.0000	1142.4	0.9757	0.4999	1111.4	1.1448
0.0497	1131.9	1.0111	0.5969	1112.9	1.1548
0.1235	1121.9	1.0519	0.6973	1114.7	1.1623
0.1763	1117.8	1.0745	0.7990	1117.6	1.1662
0.2898	1113.2	1.1093	0.8991	1121.7	1.1642
0.3979	1111.4	1.1307	0.9510	1124.6	1.1599
0.4496	1111.6	1.1384	1.0000	1130.1	1.1525

Table VI. Experimental Sound Velocities \boldsymbol{c} and Calculated Isentropic Compressibilities β_{S}, Equation 5, for the System Acetone (1) + Isooctane (2) at 298.15 K and Atmospheric Pressure as a Function of the Mole Fraction x_{1} of Acetone

| | | $\beta_{S} /\left(10^{-9}\right.$
 $\left.\mathrm{Pa}_{1}{ }^{-1}\right)$ | $c /\left(\mathrm{m} \mathrm{s}^{-1}\right)$ | x_{1} | $c /\left(\mathrm{m} \mathrm{s}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | | $\beta_{S} /\left(10^{-9}\right.$ |
| :---: |
| $\left.\mathrm{Pa}^{-1}\right)$ |

Fligure 6. Isentropic compressibility β_{s} for the system n-heptane (1) + ethanol (2) at 298.15 K at atmospheric pressure as a function of the mole fraction x_{1} of heptane: \diamond, ref 4; \square, this work.
coefficient of the liquids. They may, however, be used for an approximate estimation of it by the equation

$$
\begin{equation*}
\alpha=-\rho\left(\frac{\Delta \rho}{\Delta T}\right)_{P} \tag{7}
\end{equation*}
$$

Table VII. Experimental Densities ρ for the System Heptane (1) + Ethanol (2) at Temperature T and Atmospheric Pressure as a Function of the Mole Fraction x_{1} of Heptane

at $T=288.15 \mathrm{~K}$			at $T=308.15 \mathrm{~K}$	
x_{1}	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$		x_{1}	
0.0000	0.7937	0.0000	0.7765	
0.0491	0.7800	0.0458	0.7637	
0.2001	0.7496	0.1221	0.7464	
0.3013	0.7354	0.1965	0.7329	
0.4012	0.7242	0.2010	0.7321	
0.5011	0.7150	0.3013	0.7178	
0.6005	0.7074	0.4012	0.7065	
0.6994	0.7012	0.5011	0.6973	
0.8016	0.6956	0.6005	0.6898	
0.9506	0.6894	0.6994	0.6835	
1.0000	0.6879	0.8005	0.6783	
		0.8016	0.6781	
		0.8484	0.6760	
		0.8967	0.6740	
		0.9564	0.6719	
		1.0000	0.6709	

Table VIII. Experimental Densities ρ for the System Acetone (1) + Isooctane (2) at 293.15 K and Atmospheric Pressure as a Function of the Mole Fraction x_{1} of Acetone

x_{1}	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	x_{1}	$\rho /\left(\mathrm{g} \mathrm{cm}^{-8}\right)$
0.0000	0.7901	0.5967	0.7091
0.0493	0.7777	0.6987	0.7032
0.1985	0.7494	0.7985	0.6983
0.2503	0.7419	0.9473	0.6931
0.3977	0.7250	1.0000	0.6917

Floure 7. Cubic expansion coefficlent α for the system n-heptane (1) + ethanol (2) at 298.15 K and atmospheric pressure as a function of the mole fraction x_{1} of heptane.

The density data of the above tables are first fitted to RedilichKister polynomials for the necessary interpolations. Cubic expansion coefficients from such calculations are shown in Figure

7 for the system ethanol $+n$-heptane.

Literature Clted

(1) Flory, P. J.; Orwoll, R. A.; Vrij, A. J. Am. Chem. Soc. 1984, 86, 3507.
(2) Sanchez, T. C.; Lacombe, R. H. Macromolecules 1976, 11, 1145.
(3) Panayibtou, C. J. Phys. Chem. 1968, 92, 2960.
(4) Klyohara, O.; Benson, G. C. J. Chem. Thermocyn. 1979, 11, 861.
(5) Benson, G. C. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1988, 4, 254.
(6) Kouris, S.; Panayiotou, C. J. Chem. Eng. Data 1089, 34, 200.
(7) Papaioannou, D.; Panayiotou, C. J. Colfoid Interface Scl. 1980, 130, 432.
(8) Panayiotou, C. Pure Appl. Chem. 1889, 61, 1453.
(9) Kell, G. S.; Whalley, E. J. Chem. Phys . 1975, 62, 3496.
(10) Machado, J. R. S.; Street, W. B. J. Chem. Eng. Data 1083, $28,218$.
(11) Kubota, H.; Tanaka, Y.; Makita, T. Int. J. Thermophys. 1987, 8, 47.

Recelved for review November 6, 1989. Revised June 5, 1990. Accepted July 9, 1990. We are grateful to the General Secretariat of Research and Technology of Greece for financial support.

Volumetric Properties of Binary Mixtures. 2. Mixtures of n-Hexane with Ethanol and 1-Propanol

C. Ormanoudls, C. Dakos, and C. Panayiotou*
Department of Chemical Engineering and Chemical Process Engineering Research Institute, Universlty of Thessaloniki, 54006 Thessaloniki, Greece

Abstract

In the second part of thls serles of papers we report experimental densities for the binary mixtures n-hexane + ethanol and n-hexane +1 -propanol. The pressure range at 298.15 K is from 1 to 340 bar. At atmospheric pressure the densifies have been measured also at 288.15 and 308.15 K . The data have been used for calculating excess volumes, isothermal compressibilities, and thermal expansion coefficlents. In addition ultrasound velocity measurements are reported that have been used for calculating lsentroplc compressibilities.

Introduction

Mixtures of 1-alkanols with n-alkanes have attracted particular attention in the thermodynamic literature. IUPAC has already organized five international workshops on the vapor-liquid equilibria and related properties of these systems. New theoretical approaches for data correlation and prediction in alkanol + alkane mixtures are based on equation-of-state theories, which are extended to account for hydrogen bonding and formation of association complexes (1-3). Volumetric properties of pure components and mixtures are of particular importance in the implementation of these new theoretical approaches. However, as it was pointed out in part 1 of this series of paper (4), the usefulness of volumetric properties is not confined to equation-of-state theories.

In the second part of this series of papers we report experimental densities at 298.15 K and in the pressure range from 1 to 340 bar for the mixtures of n-hexane with ethanol and 1-propanol. Densities at atmospheric pressure and at two other temperatures are also reported. In addition, ultrasound velocity measurements have been conducted, and the results have been used for calculating isentropic compressibilities.

Experimental Section

Materlals. Pure ethanol and n-hexane used in this work were pro analysi grades from Merck while 1-propanol was a puriss. grade from Fluka. Their purity was determined by gas-liquid chromatography and was better than 99.8% for ethanol, better than 99.0% for n-hexane, and better than 99.5% for 1 -propanol. Pure liquids have been used as recelved without any further purification. The mixtures were prepared

[^1]by weight with precisions of 0.0001 g . 50 mL flasks with septum caps and magnetic stirring bars were used. The inftial vapor space in the flask was less than $3 \mathrm{~cm}^{3}$. Because of the small vapor space and the reproducibility of density measurements, no gas corrections were applied.

Density. The experimental setup for the density measurements was described previously (4). At atmospheric pressure the densities, ρ, have been measured in a vibrating tube densitometer, Model DMA 60/602 of Anton Paar. At higher pressures, a high-pressure density cell was used that consisted of a high-pressure density cell, Model DMA 512 of Anton Paar, a homemade compression cell, and a dead-weight tester, Model MTU600 of Metronex. No hysteresis was observed in the density measurements by increasing and then decreasing the external pressure. The temperature in the measuring cells was regulated through a Haake ultrathermostat and was kept constant to within 0.01 K , as measured by a precision digital thermometer, Model S1220 of Systemteknik. The estimated error in the density measurement at atmospheric pressure is $5 \times 10^{-6} \mathrm{~g} / \mathrm{cm}^{3}$. The corresponding error with the high-pressure cell is $1 \times 10^{-4} \mathrm{~g} / \mathrm{cm}^{3}$.

Ultrasonic Velocity. As previously reported (4), the ultrasound velocity was measured in sing-around equipment, Model RN-1A of DHN, at a resonance frequency of 4 MHz . The sound velocity, c, is related to the signal frequency, f, as follows:

$$
\begin{equation*}
\frac{1}{f}=\frac{L}{c}+\tau \tag{1}
\end{equation*}
$$

where L is the distance between the transducers and τ is the delay time of the impulse in the circuit. These are equipment constants.

Results and Discussion

The densities of the binary mixtures at each composition have been measured at 30 pressures between 1 and 340 bar. Selected data for 10 pressures are reported in Tables I and II. The complete sets of data are available upon request. In Figure 1 are compared our experimental data with literature data (5). As can be seen, our experimental data are in good agreement with literature values. The sets of data that have been used for callibrating our density cell are those of Kell and Whalley (6) for water and those of Machado and Street (7) for methanol. On the basis of the experimental densitles, we may calculate the molar volume of mixing V^{E} (excess volume) at each pressure according to eq 2 of the previous paper in this

[^0]: - Author to whom correspondence should be addressed.

[^1]: - Author to whom correspondence should be addressed.

